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1 Introduction

A new superstring formalism, the pure spinor formalism, has been developed over the past

ten years [1–3], see [4, 5] for reviews. In this new formalism, the theory exhibits manifest

super Poincaré invariance, as in the Green-Schwarz (GS) formalism, but in contrast with

the GS string the worldsheet theory in flat target space is free, as in the Ramond-Neveu-

Schwarz (RNS) formalism, so the theory can be quantized straightforwardly.

There are two versions of this formalism, the minimal [2] and the non-minimal for-

malism [3]. In this paper we discuss exclusively the minimal case. A multi-loop scattering

amplitude prescription was developed in [2] and it involves introducing a number of picture

changing operators (PCO’s) that are inserted in the path integral. These operators are

BRST closed in a distributional sense and depend on constant spinors (Cα) and constant

tensors (Bmn). It was argued in [2] that amplitudes are independent of C and B, because

the Lorentz variation of PCO’s is BRST exact. The same conclusion can be reached from

the results in [6], where the presence of the PCO’s in the path integral was derived via

BRST-BV quantization that takes into account the gauge invariances due to zero modes [7].

A manifestly Lorentz invariant prescription can be obtained by integrating over C and B [2]

and this is the form we will use here.

One may question whether the PCO’s Y are closed because their BRST variation only

vanishes in a distributional sense, QY ∼ xδ(x), where x is an appropriate field variable.

That would give zero only if integrated against a smooth function of x. It is shown in [8]

however that the amplitudes in the current minimal amplitude prescription do contain

singular terms that imply that QY is not zero inside correlators. This leads to explicit
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dependence of the amplitudes on B and C and problems with decoupling of BRST exact

states and with Lorentz invariance, when one does not integrate over B and C. The singular

behavior of the amplitudes is linked to the fact that the gauge fixing condition of the zero

mode gauge invariances implicit in the current formulation is singular and we anticipate

that a proper treatment of global issues will allow for a non-singular gauge fixing condition

and will lead to a prescription free of these problems. Work in this direction is in progress.

Here we will show that these problems are also absent when one integrates over B and C.

Note that QY 6= 0 by itself does not imply that Q exact states do not decouple. It

only implies that the standard argument for decoupling of unphysical states that involves

integrating Q by parts does not automatically lead to decoupling. In [8] it was shown

that at tree level one can nevertheless establish decoupling of BRST exact states using

integration of Q by parts. The core of that argument is the vanishing of the trace of a

certain Lorentz invariant tensor, (ǫT ), defined in (2.13). At one loop, we can identify a

Lorentz invariant tensor (ǫTR), defined in (2.20), that is the one-loop analog of (ǫT ). That

is to say, all one-loop amplitudes with a Q exact state are proportional to the trace of this

tensor. Had this trace vanished, this would imply that Q exact states decoupled at one

loop. It turns out however, as proven in [8], that the trace of this one-loop invariant tensor

does not vanish, so one needs a different argument to prove decoupling of unphysical states.

The main result of this paper is to provide such an argument. The new argument does

not use integration of Q by parts. Rather it makes use of a (so far unnoticed) invariance

of the path integral measure and the fact the zero mode integrals act as projectors on a

certain Lorentz scalar. Then one can show that the integrand that results from BRST

exact insertions does not contain this scalar, hence amplitudes that contain unphysical

states vanish after integration.

This paper is organized as follows. In the next section we present a short review of the

amplitude prescription in the minimal pure spinor formalism, mostly to set our notation.

In section 3 the main result is discussed, namely the proof of decoupling of unphysical

states in the minimal pure spinor formalism. Finally there is a short concluding section.

2 Minimal pure spinor amplitude prescription

In this section we review the amplitude prescription for the minimal pure spinor super-

string [2]. The N point tree-level amplitude is given by

A = 〈V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·

∫

dzNUN (zN )YC1
(y1) · · · YC11

(y11)〉 (2.1)

The vertex operators are given by

V = λαAα(x, θ), (2.2)

U = ∂θαAα(x, θ) + ΠmAm(x, θ) + dαW α(x, θ) +
1

2
NmnFmn(x, θ). (2.3)

where Aα(x, θ), Am(x, θ) is the superfield connection for N=1, d=10 SYM and W β,Fmn

are the corresponding field strengths. YC are the picture changing operators (PCO) needed
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to absorb the zero modes of the weight zero fields:

YC(y) = Cαθα(y)δ(Cβλβ(y)), (2.4)

where Cα is a constant spinor.

The N point one-loop amplitude involves one unintegrated vertex operator, V , N−1

integrated vertex operators, U , a composite b̃ field and picture changing operators YC , ZB

and ZJ ,

A(N) =

∫

d2τ〈|

∫

d2uµ(u)b̃B1(u, z1)
10
∏

P=2

ZBP (zP )ZJ(z11)
11
∏

I=1

YCI
(y)|2

V1(t1)
N
∏

T=2

∫

d2tT UT (tT )〉. (2.5)

The ZB ’s and ZJ are PCO’s needed to absorb the zero modes of the weight one fields:

ZB(z) =
1

2
Bmnλ(z)γmnd(z)δ(BmnNmn(z)), ZJ(z) = λα(z)dα(z)δ(J(z)), (2.6)

where Bmn is a constant antisymmetric tensor. The composite b̃ field satisfies

{Q, b̃B(u, z)} = T (u)ZB(z). (2.7)

This equation ensures the Q variation of the b ghost vanishes after integrating over moduli

space. The solution is given by [2]

b̃B(u, z) = bB(u) + T (u)

∫ z

u

dvBpq∂Npq(v)δ(BN(v)). (2.8)

The local b ghost, bB(u), is a composite operator, constructed out of the worldsheet fields:

bB(z) = bB0(z)δ(BN(z))+bB 1(z)δ′(BN(z))+bB2(z)δ′′(BN(z))+bB3(z)δ′′′(BN(z)), (2.9)

where the primes denote derivatives, BN ≡ BmnNmn and the explicit expressions of bBi

can be found in appendix A.

The amplitude prescription for g > 1 is given by

A(N) =

∫

d2τ1 · · · d
2τ3g−3〈|

3g−3
∏

P=1

∫

d2uP µP (uP )b̃BP (uP , zP )

10g
∏

P=3g−2

ZBP (zP )

g
∏

R=1

ZJR(vR)

11
∏

I=1

YCI
(y)|2

N
∏

T=1

∫

d2tT UT (tT )〉. (2.10)

where we have grouped the insertions in a way that will be useful later.

The amplitude prescription just described was also obtained from first principles in [6]

by coupling the pure spinor sigma model to topological gravity. In particular, the PCO’s

arise in this context by gauge fixing gauge invariances due to zero modes. The constant

tensors Cα and Bmn enter the theory through gauge fixing conditions. Thus, provided
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there are no BRST anomalies and the gauge fixing is non-singular, the amplitudes should

be independent of C and B. However, as shown in [8], the gauge fixing is singular and

amplitudes do depend on the choice of B and C. One can restore manisfest Lorentz

invariance by integrating over all possible choices for B and C. This integral is incorporated

in the computations below.

As described in [2], the amplitude (2.5) is evaluated by first using the OPE’s to remove

all fields of non-zero weight. After this step all fields have weight zero. This can be evalu-

ated by replacing the fields by their zero modes and performing the zero mode integrations.

So we need to know how to integrate over the zero modes. For the d, θ, x variables this is

standard, so we only discuss the integration over λ,N,B,C.

A typical integral one encounters is given by [2]:

A =

∫

[dλ][dB][dC]

g
∏

R=1

[dNR]f(λ,NR, JR, C,B) (2.11)

where the zero mode measure for [dλ] is given by

[dλ]λαλβλγ = dλα1 ∧ · · · ∧ dλα11(ǫT )αβγ
α1···α11

, (2.12)

with

(ǫT )αβγ
α1···α11

= ǫα1···α16
Tαβγα12···α16 , (2.13)

Tαβγα12···α16 = γα[α12

m γ|β|α13

n γ|γ|α14

p (γmnp)α15α16]. (2.14)

The zero mode measure for (each zero mode of) [dN ] is given by

[dN ]λα1 · · ·λα8 = dNm1n1 ∧ · · · ∧ Nm10n10 ∧ dJRα1···α8

m1n1···m10n10
, (2.15)

with

Rα1···α8

m1n1···m10n10
≡ γ((α1α2

m1n1m2m3m4
γα3α4

m5n5n2m6m7
γα5α6

m8n8n3n6m9
γα7α8))

m10n10n4n7n9
+ permutations.

(2.16)

The permutations make R antisymmetric under exchange in both mi ↔ ni and mini ↔

mjnj and the double brackets denote subtraction of the gamma trace. The zero mode

integral (2.11) is only non-zero if the function f depends on (λ,N, J,C,B) as

f(λ,N, J,C,B) = h(λ,N, J,C,B)

g
∏

R=1

∂MRδ(J)

10
∏

P=1

g
∏

R=1

∂LP,Rδ(BP NR)

11
∏

I=1

∂KI δ(CIλ),

(2.17)

where the polynomial h assumes the form

(λ)8g−8+
P

11
I=1

(KI+1)
g
∏

R=1

(JR)MR(NR)
P

10
P=1

LP,R

10
∏

P=1

(BP )LP,R+1

11
∏

I=1

(CI)KI+1. (2.18)
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The integration over the zero modes of the pure spinor variables and the constant tensors

is defined in [2] as

A = c
∂

∂λα1
· · ·

∂

∂λα3
(ǫT )α1···α3

β1···β11

[

Rα4···α11

m1n1···m10n10

∂

∂λα4
· · ·

∂

∂λα11

∂

∂B1
m1n1

· · ·
∂

∂B10
m10n10

]g

∂

∂C1
β1

· · ·
∂

∂C11
β11

11
∏

I=1

(

∂

∂λδ

∂

∂CI
δ

)KI 10
∏

P=1
g
∏

R=1

(

∂

∂BP
pq

∂

∂N
pq
R

)LP,R
g
∏

R=1

(

∂

∂JR

)MR

h(λ,NR, JR, C,B), (2.19)

for some proportionality constant c.

In the sequel we will use the following notation

(ǫTR)α1···α11

β1···β11m1n1···m10n10
≡ (ǫT )

((α1α2α3

β1···β11
R

α4···α11))
m1n1···m10n10

, (2.20)

(TR)α1···α11β12···β16

m1n1···m10n10
≡ T β12···β16((α1α2α3R

α4···α11))
m1n1···m10n10

. (2.21)

3 Proof of decoupling of Q exact states

Decoupling of unphysical states in the minimal pure spinor formalism would follow, if

all insertions were Q closed. As discussed in [8], however, the Y ’s are not BRST closed

inside correlators. More specifically the PCO’s for the λ zero modes, denoted by YC , are

not closed:

QYC = Q(Cθ)δ(Cλ) = (Cλ)δ(Cλ). (3.1)

This vanishes in a distributional sense but it does not necessarily vanish if there are inser-

tions containing factors of 1
Cλ

. In the minimal pure spinor formalism the pure spinor zero

mode measure [dλ] contains a factor 1
(λ+)3

. Therefore one cannot conclude QYC = 0. In

fact in [8] some amplitudes with Q exact states were computed in the formulation without

an integral over C. These did not vanish, hence we can conclude Q(YC1 · · ·YC11) 6= 0. Nev-

ertheless, we were able to show decoupling of Q exact states at tree level in the formulation

with an integral over C. In next subsection we review the tree-level argument in a form

that generalizes to the higher loops and show that Q exact states decouple to all orders.

A crucial role in this proof is played by symmetry of the insertions that follows from the

particular form of the picture raising operators, ZB . We will first present the proof for

one-loop amplitudes, followed by a proof of decoupling valid at any genus.

3.1 Tree-level amplitudes

After integrating out the non-zero modes every tree-level amplitude assumes the form

A =

∫

[dλ][dC]d16θλαλβλγfαβγ(θ, a, k)θβ1 · · · θβ11C1
β1

· · ·C11
β11

δ(C1λ) · · · δ(C11λ), (3.2)

where a denotes all polarizations and k denotes all momenta. Note that we have assumed

that integration over the non-zero modes does not affect the factor of YC1 · · ·YC11 . This

– 5 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
5

can be justified either by writing YC as a function of only zero modes or by inserting the

factor of (YC)11 at z = ∞ on the worldsheet. The three factors of λ originate from the

three unintegrated vertex operators and the factors of θ, C and δ(Cλ) from the eleven

picture changing operators YC . In order to evaluate (3.2) first note that only terms with

five θ’s can contribute:

A =

∫

[dλ][dC]d16θλαλβλγf
(5)
αβγβ12···β16

(a, k)θβ1 · · · θβ16C1
β1

· · ·Cβ11
δ(C1λ) · · · δ(C11λ),

(3.3)

We will show now that the integration is a projection on the scalar in f
(5)
αβγβ12···β16

(a, k). To

this end we write the tensor product (λ)3(θ)5 in terms of its irreducible representations:

λαλβλγθβ12 · · · θβ16 = Tαβγβ12···β16Tα′β′γ′β′

12
···β′

16
λα′

λβ′

λγ′

θβ′

12 · · · θβ′

16 + (3.4)

(T1)
αβγβ12···β16[mn](T1)α′β′γ′β′

12
···β′

16
[mn]λ

α′

λβ′

λγ′

θβ′

12 · · · θβ′

16 +
∑

i≥2

(Ti)
αβγβ12···β16xi(Ti)α′β′γ′β′

12
···β′

16
xi

λα′

λβ′

λγ′

θβ′

12 · · · θβ′

16,

where xi are the indices representing the representation. To obtain the above expansion

one first needs to compute the tensor product Gam316 ⊗ Asym516. This contains one

scalar, hence there is only one invariant tensor with the indices and symmetries of T (an

explicit realization is specified in (2.14)). One also finds there is one 45 in the tensor

product, hence the second line. The sum in the last line runs over all the other irreps in

the tensor product, each one has an invariant tensor (Ti) associated to it. Furthermore all

the (Ti)’s satisfy

Tαβγβ12···β16(Ti)αβγβ12···β16xi
= 0. (3.5)

This can be proven by contracting both sides of (3.4) with Tαβγβ12···β16
. The integrations

in (3.3) can be evaluated by Lorentz invariance:

(
∫

d16θθβ1 · · · θβ16

)(
∫

[dλ][dC]λαλβλγC1
β1

· · ·Cβ11
δ(C1λ) · · · δ(C11λ)

)

= (3.6)

ǫβ1···β16(ǫT )αβγ
β1···β11

= Tαβγβ12···β16

After using (3.5) one sees all the non scalar terms in (3.4) are annihilated by the integra-

tion. It is therefore a projection on the scalar as claimed. The final expression for the

amplitude becomes

A = Tαβγβ12···β16f
(5)
αβγβ12···β16

(a, k). (3.7)

3.1.1 Decoupling of Q exact states at tree level

After integrating out the non-zero modes, the amplitude containing a Q-exact

state becomes,
∫

[dλ]d16θ(QΩ(λ, θ, a, k))θβ1 · · · θβ11C1
β1

· · ·Cβ11
δ(C1λ) · · · δ(C11λ), (3.8)

for some Ω, where all fields are zero modes. Our task now is to show that this integral

vanishes for any Ω.

– 6 –
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Since only the terms with five θ’s and three λ’s in QΩ contribute, we focus on terms

in Ω with two λ’s and six θ’s. The upshot of the proof is that no Lorentz scalar can be

constructed from two λ’s and six θ’s. Therefore there will be no scalar in Q(λ)2(θ)6 and

since the integration projects on the scalar the amplitude vanishes. In order to make this

argument precise let us write:

Ω|(λ)2(θ)6 = λαλβθβ1 · · · θβ6f̃αββ1···β6
(a, k) (3.9)

for some f̃ . The next step is writing the tensor product (λ)2(θ)6 in terms of its irreducible

representations:

Ω|(λ)2(θ)6 = f̃αββ1···β6
(a, k)

(

∑

i

(T̃i)
αββ1···β6yi(T̃i)α′β′β′

1
···β′

6
yi

λα′

λβ′

θβ′

1 · · · θβ′

6

)

. (3.10)

In the above formula it is important to note that there are no scalars in the tensor product

of two pure spinors and six fermionic spinors. This is reflected by the fact that yi represents

(a positive number of) indices for every i. We now perform the Q transformation:

QΩ|(λ)2(θ)6 = f̃αββ1···β6
(a, k)

(

∑

i

(T̃i)
αββ1···β6yi(T̃i)α′β′[γ′β′

2
···β′

6
]yi

λα′

λβ′

λγ′

θβ′

2 · · · θβ′

6

)

.

(3.11)

After invoking (3.7) we find

∫

[dλ]d16θ
(

QΩ|(λ)2(θ)6
)

θβ1 · · · θβ11C1
β1

· · ·Cβ11
δ(C1λ) · · · δ(C11λ) = (3.12)

f̃αββ1···β6
(a, k)

∑

i

(T̃i)
αββ1···β6yi(T̃i)α′β′[γ′β′

2
···β′

6
]yi

Tα′β′[γ′β′

2
···β′

6
] = 0

This vanishes because

Tα′β′[γ′β′

2···β
′

6] = 0, (3.13)

which follows from the statement that there are no scalars in (λ)2(θ)6. This concludes the

proof that (3.8) vanishes.

3.2 Higher-loop amplitudes

In order to prove decouling of unphysical states at higher-loop amplitudes one can take

similar steps to the tree-level case. This means that one first reduces the amplitude to a

zero mode integral, which is effectively a projection onto a scalar and then one shows there

is no scalar when one started with a Q exact state. In the higher-loop case we need an

additional ingredient for the second step which is a symmetry possessed by the integrand

of the functional integral.

Additional symmetry. The amplitude prescription contains products of PCO’s ZB and

ZJ . The main observation is that

ZBZJ = Bmnλγmnd δ(BmnNmn)(λd)δ(J) (3.14)

– 7 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
5

is invariant under

δBmn = (λγ[m)αfα
n]. (3.15)

where fnα are constants. This transformation acts on the BmnNmn and Bmnλγmnd as,

δBmnNmn = (λγm)αfα
n (λγmnw) = (λγnfn)(λw), (3.16)

δBmn(λγmnd) = (λγm)αfα
n (λγmnd) = (λγnfn)(λd). (3.17)

Since all these transformation contain either (λw) or (λd) and ZJ contains both δ(λw)

and λd:

δ(ZBZJ) = 0. (3.18)

Now recall that at genus g, 3g − 3 B’s (one at genus one) enter via the b ghost. We take

these B’s to be inert. The remaining 7g + 3 B’s (9 at genus one) are taken to transform

as in (3.15) . Note that at one loop, the factor of (ZB)9ZJ is placed at a single point on

the worldsheet. At two-loop order, the additional factor of (ZB)7ZJ is placed at a second

point on the worldsheet. And at each additional loop order, one places the new factor of

(ZB)7ZJ at a gth point on the worldsheet. With this choice, (3.15) is an invariance of the

theory for 7g + 3 B’s and the amplitudes must respect this symmetry.

One can understand the origin of this symmetry by going back to the first principles

derivation of the amplitude prescription in [6]. As shown there, PCO insertions arise from

gauge fixing the invariance due to pure spinor zero modes. In particular, this leads to the

insertion in the path integral of the expression

exp

(

παλα + π̃αθα +

g
∑

I=1

(

−πI
mn

1

2
dIγmnλ + π̃I

mnNmnI − πIdI
αλα + π̃IJI

)

)

, (3.19)

where πα, π̃α, πmnI , π̃mnI , πI , π̃I are the BRST auxiliary fields, g is the genus and I counts

the g zero modes of worldsheet vectors. This expression is invariant under

δπI
mn = (λγ[m)αf Iα

n] , δπI = −
1

2
(λγnf I

n) (3.20)

δπ̃I
mn = (λγ[m)αf̃ Iα

n] , δπ̃I = −(λγnf̃ I
n) (3.21)

This symmetry implies that out of the 45 components of each πI
mn and π̃I

mn only 10 are

independent, as it should be since the number of BRST auxiliary fields should be equal to

the number of gauge fixing conditions.

In the non-minimal formalism, πI
mn and π̃I

mn are identified with N̄mnI and SI
mn and

these automatically have the correct number of independent components because they are

constructed using the non-minimal pure spinor variables. On the other hand, to arrive at

the minimal formulation we set

πI
mn = pjIBjI

mn, π̃I
mn = p̃jIBjI

mn, j = 1, . . . , 10 (3.22)

and integrate over pjI , p̃jI . This leads to the ZB insertions. In this case, there is a remnant

of the symmetry (3.20), which is (3.15) for all B. This suggests that the amplitudes is also

invariant, if we transform the (3g − 3) (one when g = 1) factors of B involved in the b

insertions1, but we will not prove or use this here.

1Recall that (3g − 3) (one when g = 1) of the ZB factors are absorbed into the b-insertions.

– 8 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
5

3.2.1 One-loop amplitudes

After integrating out all non-zero modes, as well as the dα zero modes, every one-loop

amplitude can be written as

∫

[dλ][dN ][dC][dB]d16θλα1 · · · λα11B1
m1n1

· · ·B10
m10n10

fm1n1···m10n10

α1···α11
(θ, a, k)

θβ1 · · · θβ11C1
β1

· · ·C11
β11

δ(C1λ) · · · δ(C11λ)δ(B1N) · · · δ(B10N)δ(J), (3.23)

where all fields are zero modes and the integrand is invariant under the B transforma-

tion (3.15). As in the tree amplitude, we are assuming that integration over the non-zero

modes does not affect the (YC)11 factor since this factor can be written in terms of only

zero modes. In this expression, eleven factors of λ originate as follows: one from the unin-

tegrated vertex operator, one from ZJ and nine from the nine factors of ZB . In general the

zero mode integral can contain additional factors of the Lorentz currents N , higher powers

of B and higher derivatives of δ(BN). These additional factors can be put into the form

of (3.23) by integrating by parts using that NpqBmn∂δ(BN) = −δ
[p
mδ

q]
n δ(BN).

One can show that the integral in (3.23) is also a projection on a scalar. To see this

first note that there is one scalar in Gam1116 ⊗ Asym516 ⊗ Asym1045. This implies one

can write

λα1 · · ·λα11θβ12 · · · θβ16B1
m1n1

· · ·B10
m10n10

= (TR)α1···α11β12···β16

m1n1···m10n10

(

(TR)(λ)11(θ)5(B)10
)

+

∑

i

(Si)
α1···α11β12···β16

m1n1···m10n10xi

(

Si(λ)11(θ)5(B)10
)xi

,

(3.24)

where the notation
(

(TR)(λ)11(θ)5(B)10
)

means that all indices of (TR) have been con-

tracted with those of λ, θ and B and
(

Si(λ)11(θ)5(B)10
)xi denotes an object that has xi as

its only free index and which transforms in some non-scalar representation. Similar to the

tree-level case the invariant tensors Si satisfy

((RT )(Si))
xi = 0. (3.25)

Note that since B is not a covariant tensor this is not the decomposition of a Lorentz

invariant object into a lot of Lorentz invariant terms like (3.4). However this does not

matter, the point of performing this expansion is that all the non scalar terms vanish due

to the integration. The last point follows from (3.25) and

∫

[dλ][dC][dB][dN ]λα1 · · · λα11B1
m1n1

· · ·B10
m10n10

C1
β1

· · ·C11
β11

(3.26)

δ(C1λ) · · · δ(C11λ)δ(B1N) · · · δ(B10N)δ(J) = (ǫTR)α1···α11

β1···β11m1n1···m10n10
,

which is also a consequence of the fact there is only one Lorentz scalar in Gam1116 ⊗

Asym516⊗ Asym1045.
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Decoupling of Q exact states. We will show that if

λα1 · · ·λα11B1
m1n1

· · ·B10
m10n10

fm1n1···m10n10

α1···α11
(θ, a, k) (3.27)

can be written as QΩ where Ω is invariant under the B transformation then (3.23) vanishes.

Note Ω must contain ten λ’s, six θ’s and ten B’s. There are two scalars in Gam1016⊗

Asym616 ⊗ Asym1045. Since Gam1116 ⊗ Asym516 ⊗ Asym1045 contains only a single

scalar and Q maps scalars to scalars, there is a basis of invariant tensors such that one of

the scalars is annihilated by the BRST operator and the other one, call it Ω1, has non-zero

BRST variation, QΩ1 6= 0. This scalar is2

Ω1 =
(

T (λ)3(θ)5
) (

R(B)10(λ)7(θ)1
)

. (3.28)

Here (R(B)10(λ)7(θ)1) denotes the unique scalar obtained by contracting all indices of the

objects involved. The state QΩ1 is a candidate BRST exact state that may not decouple.

The scalar Ω1 however is not invariant under the transformation (3.15) for 9 of the 10 B’s.

In fact, one can show that Ω1 is invariant under the transformation (3.15) for only 6 of the

10 B’s. To see this, note that
(

R(B)10(λ)7(θ)1
)

can be expressed as

(λγm1···m5λ)(λγm6···m10λ)(λγm11 ···m15λ)(λγm16···m20θ) (3.29)

contracted with the 20 vector indices of (B)10. If both indices of Bpq are contracted

with m1 · · ·m15, then Ω1 is invariant under the transformation (3.15) for that B since

(λγmn1···n4λ)(λγm)α = 0. However, if at least one index of Bpq is contracted with

m16 . . . m20, then Ω1 is not invariant under the transformation (3.15) for that B. Us-

ing the definition of Rα1...α8
m1...m20

, one finds there are four B’s whose indices are contracted

with m16 . . . m20, so Ω1 is invariant under the transformation (3.15) for 6 of the 10 B’s.

But since the gauge parameter must be invariant under (3.15) for 9 of the 10 B’s, there

is no way to generate Ω1 as a possible gauge parameter. We thus conclude that if it is Q

exact and invariant under the B transformation,

fm1n1···m10n10

α1···α11
(θ, a, k)λα1 · · ·λα11B1

m1n1
· · ·B10

m10n10
(3.30)

does not contain any scalars constructed from eleven λ’s, five θ’s and ten B’s. Since the

integration projects on the (single) scalar the total zero mode integral vanishes. The precise

argument is analogous to the steps in section 3.1.1.

3.2.2 Higher-loop amplitudes

The argument for g > 1 is exactly analogous. After integrating out all non-zero modes, as

well as the zero modes of dα, every g > 1 loop amplitude can be written as
∫

d16θ[dλ][dC]λα1λα2λα3θβ1 · · · θβ11C1
β1

· · ·C11
β11

δ(C1λ) · · · δ(C11λ)

g
∏

I=1

(

[dBI ][dN I ]λαI
4 · · ·λαI

11B1I
mI

1
nI

1

· · ·B10I
mI

10
nI

10

δ(B1IN) · · · δ(B10IN)δ(JI )
)

f
m1

1
n1

1
···mg

10
n

g
10

α1α1α3α1
4
···αg

8

(θ, a, k) (3.31)

2Another possible candidate,
`

T (λ)2(θ)6
´ `

R(B)10(λ)8
´

, vanishes identically because of (3.13).
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where all fields are zero modes and the integrand is invariant under the B transforma-

tion (3.15). Now the factors λ originate from the (7g + 3) factors of ZB and the g factors

of ZJ . Additional factors of N , B and derivatives of δ(BN) can be removed as in the

one-loop case.

In this case the analogue of (3.26) is

∫

[dλ][dC]λα1λα2λα3C1
β1

· · ·C11
β11

δ(C1λ) · · · δ(C11λ),

g
∏

I=1

(

[dBI ][dN I ]λαI
4 · · ·λαI

11B1I
mI

1
nI

1

· · ·B10I
mI

10
nI

10

δ(B1IN) · · · δ(B10IN)δ(JI )
)

= (ǫTRg)
α1α2α3α1

4
···αg

11

β1···β11m1
1
n1

1
···mg

10
n

g
10

(3.32)

where (ǫTRg) is the generalization of (2.20) involving g factors of R.

There are g candidate BRST exact states that may not decouple, which are the analogs

of (3.28) and are given by

ΩJ =
(

T (λ)3(θ)5
)

J−1
∏

I=1

(

R(BI)10(λ)8
) (

R(BJ)10(λ)7(θ)1
)

g
∏

I=J+1

(

R(BI)10(λ)8
)

(3.33)

where BI denotes the B’s associated with the Ith zero mode. As in the one-loop case, the

term
(

R(BJ)10(λ)7(θ)1
)

is at most invariant under 6 of the 10 BJ transformations. But

invariance under (3.15) requires invariance under 7 of the 10 BJ transformations.

So we conclude that unphysical states decouple to all orders in g.

4 Conclusion

We presented in this paper a proof of decoupling of unphysical states in the minimal pure

spinor formalism to all loop order. We were able to prove this despite the fact that not all

insertions in the path integral are Q closed. More specifically our argument did not involve

integrating Q by parts. The two main ingredients were the presence of the B symmetry

and the fact that the zero mode integrals act as projectors on a scalar.

As is discussed in [8], the amplitudes in the prescription of [2] without an integral over

C are actually singular and the distributional relations do not hold inside correlators. The

singularities in the amplitudes are likely to reflect the fact that the gauge choice for the

gauge invariances due to zero modes implicit in the prescription of [2] is singular. Obtain-

ing a prescription corresponding to a non-singular gauge choice may require incorporating

global issues, in particular taking into account all patches in the pure spinor space3, see

section 6 of [8] for further discussion, and such a prescription is currently under investiga-

tion. We anticipate that such a prescription will also lead to decoupling of BRST exact

states, without integrating over C and B.

3We thank Nikita Nekrasov for this suggestion.
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A Chain of operators for b ghost

bB0 =
1

2
GγmndBmn −

1

2
Hαβ(γpγmn)αβΠpBmn (A.1)

+
1

2
Kαβγ(γpγmn)βγ(γp∂θ)αBmn +

1

2
Sαβγ(γpγmn)βγ(γp∂λ)αBmn,

bB1 =
1

4
Hαβ(Bd)α(Bd)β (A.2)

+
1

4
Kαβγ(γpγmn)βγ(Bd)αΠpBmn +

1

4
Kαβγ(γpγmn)α[β(Bd)γ]ΠpBmn

+
1

4
Lαβγδ[((γpγmn)γδ(Bd)[α(γp∂θ)β] − (γpγmn)β[γ(Bd)δ](γp∂θ)α)Bmn

−((γsγrq)α[β(γpγmn)γ]δ + (γsγrq)αδ(γ
pγmn)βγ)ΠpBmnΠsBqr],

bB2 = −
1

8
Kαβγ(Bd)α(Bd)β(Bd)γ −

1

8
Lαβγδ((γpγmn)γδ(Bd)β(Bd)α (A.3)

+(γpγmn)β[γ(Bd)δ](Bd)α +
1

2
(γpγmn)α[δ(Bd)γ(Bd)β])ΠpBmn,

bB3 = −
1

16
Lαβγδ(Bd)α(Bd)β(Bd)γ(Bd)δ , (A.4)

where (Bd)α ≡ Bmn(γmnd)α. The explicit form of the tensors Gα,Hαβ ,Kαβγ , Lαβγδ can

be found, for example, in section 3 of [9]. They do not contain any B tensors.
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